
On the design of a submodule based on the
input/output FSM model*

J. Drissi, N. Yevtushenko,
A. Petrenko and G. V. Bochmann

publication # 1120

Avril 1998

On the design of a submodule based on the input/output FSM
model*

J. Drissft, N. Yevtushenko?1, A. Petrenko^ and G. v. Bochmann^

1 Universite de Montreal, CP. 6128, Succ. Centre-Ville, Montreal, H3C 3J7, Canada,

Phone: (514) 343-7535, Fax: (514) 343-5834, {drissi, bochmann }@iro.umontreal.ca

2 Tomsk State University, 36 Lenin str., Tomsk, 634050, Russia,

yevtushenko @ elephot. tsu. tomsk. su

3 CRIM, Centre de Recherche Informatique de Montreal, 1801 Avenue McGill College, Suite

800, Montreal, H3A 2N4, Canada, Phone: (514) 840-1234, Fax: (514) 840-1244,

petrenko @ crim. ca

Abstract

This paper addresses the problem of designing a submodule of a given system of

communicating input/output FSMs. The problem may be formulated mathematically by the

equation COX=A, where C represents the specification of the known part of the system, called

the context, A represents the specification of the whole system, X represents the specification
of the submodule to be constructed, 0 is a composition operator and = is the trace equivalence

relation. The set of solutions to the equation (if they exist) can be represented as a subset of

the set of D-reductions of a proper nondeterministic FSM. The algorithm for finding this

nondeterministic FSM is based on the use of a chaos machine and the construction of a

machine which separates the permissible and the forbidden traces. After removing all the

forbidden traces, we obtain the sought-after machine. Due to the existence of livelocks, some

reductions of the obtained machine are not solutions to the equation since their composition

with the context can not be modeled by an FSM. If there are no livelocks, the set of solutions

to the equation coincides with the set of D-reductions of the obtained machine and then we

can characterize all the solutions.

1 Introduction

In designing a complex system, the designer often uses stepwise refinement techniques where

the specification is decomposed into interacting modules such that the behavior of the

modules in composition is equivalent to the behavior of the overall system specification. The

problem of submodule construction arises in this context; it consists of constructing the

* This work was partially supported by the NSERC strategic grant SRTGP200 "Methods for the systematic testing of distributed
software systems".

specification of a submodule X when the specification of the overall system and of all

submodules except X are given. Approaches to the construction of a submodule specification

based on the LTS model have been presented in [Merlin 83, Qin 91, Lin 95]. Here, we

consider this problem in the context of the input/output Finite State Machine model (I/O

FSM). The direct application of an approach based on the LTS model is not possible since the

solutions obtained are not in general I/O FSMs. We have to add constraints on the

environment behavior to obtain the system's behavior in the form of an I/O Finite State

Machine.

We consider the following problem. Given two deterministic I/O FSMs A and C that

represent respectively the behavior of a desired system and the behavior of an existing

subsystem called the context, we would like to determine if there exists an I/O FSM X which,

combined with the context C, exhibits the behavior of A. We show in this paper that the set of

solutions can be represented as a subset of all reductions of a specific nondeterministic I/O

FSM. Any reduction of this nondeterministic I/O FSM is a candidate solution, i.e. if its

composition with the context does not contain livelocks then it is a solution.

This paper is structured as follows. In Section 2, we define basic notions. Section 3

presents the architecture of the composition of the components followed by the method of

determining the set of candidate solutions for a submodule. We conclude in Section 4.

2 Basic notions and definitions
An input/output nondeterministic finite state machine (FSM), often simply called a machine

throughout this paper, is an initialized Mealy machine which can be formally defined as
follows. An NFSM A is a 5-tuple (S, X, Y, h, s0), where 5 is a non-empty finite set of states

with so as the initial state, X is a non-empty finite set of input symbols, Y is a non-empty

finite set of output symbols and h is a total behavior function h: SxX —> P(SxY)\{0}, where

P(SxY) is the powerset of 5x7 [Starke 72].

Given two states s and p, input x and output y, if (p, y)e h(s, x) then we say that there

is a transition from s to p with the input x and output y. Such a transition is denoted s-xly->p.
The FSM A is called an observable machine, if \{s'\ h(sj:)}\<l holds for all (s,

x)eSxX and all ye Y [Starke 72]. This means, in observable machines, a state and an I/O

sequence uniquely determine the next state. The machine A becomes deterministic when \h(s,
x)\=l for all (s, x)&Sx.X. In a deterministic FSM, instead of the behavior function, we can use

two functions: the next state function 8, and the output function A.

We extend the behavior function to a function h of the FSM A on the set X* of input
sequences containing the empty sequence e (for convenience we use the same notation h for

the extended function, as well, since in our discussion, this does not imply any ambiguity),

i.e., h: SxX* -> P(SxY*)\{0}. Assume h(s, e) = (s, e) for all se S, and suppose that h(s, j8) is

already specified. Then

h(s, ftx)={(s\) 1 3 s"z S [(s", i) eh(s, ft &(s', y)e h(s", *)]}.

The function h^ is the first and h2 is the second projection of h, i.e.
hl(s, a)= [s'\3 reF* (s', r)eh(s, a)},

h2(s, a) = { r\ s'eS (s', Y) eh(s, a)}.

An NFSM 5=(S, X, 9, h, so) is called a submachine of A if ScS, PtF and /7(j, x)ch(s,

The equivalence relation between two states s of the FSM A=(S, X, Y, h, SQ) and t of

the FSM B=(T, X,Y,H, fo), written s£f, holds iff (/i2(s, a)=772(f, a)) for each a e X*,

otherwise, the states are not equivalent. The FSMs A and B are said to be equivalent if their

initial states are equivalent, otherwise they are nonequivalent. The equivalence relation

between FSMs is sometimes called trace equivalence. The traces of a machine are

input/output (I/O) sequences accepted by its initial state. Equivalent machines exhibit

identical behaviors, i.e. they execute the same traces.
A state t of the FSM B=(T, X,Y,H, ro) is said to be a reduction of a state s of the

FSM A=(S, X, Y, h, SQ), written t<s, iff Va eX* (H2(t, a) c h2(s, a)), otherwise t is not a

reduction of s, written t£s. The FSM B is said to be a reduction of A, B<A, iff the initial state
to of B is a reduction of the initial state so of A. Otherwise, B is not a reduction of A, B &A. If

B is deterministic and B<A, then B is called a D-reduction of A.
A Labeled Transition System (LTS) is a quadruple 7=(S, L, T, $o), where S is a non-empty

finite set of states with so as the initial state, L is a non-empty finite set of observable actions

and rc5x(L U{ T})X5 is a transition relation where Tis a non-observable action. We denote

Tr(so) the set of traces of 7, that is the set of sequences of observable actions of 7.

The parallel composition of two LTSs I\=(S\,L\, T\ so\) and I2=(S2, L2, T2, so2)

without internal actions, written I\I 72, is the LTS 7 =(S*S2, L\(JL2, T, (s0\, so2))> where

T is defined as follow :

- a € LinL2 A (si, a , s'l)e T\ (s2, a , s'2)e TI $ ((si, S2),a, (s'l , s'2))e T

- a e Li\LinL2 A (si, a , s'l)e TI ^ Vs 2 e 52 , ((*i, J2), « , (*'l , *2))e r

- a e L2\L\r\L2 A (J2> a , s'2)e T2 ^ V^ IE 5] , ((si, si \, (si , s'2))e I

Let o^Hi...wfc eC7* and f^z\...zk eZ*, we denote by atx/Jthe sequence uizi-.Mkzk-

Let <56(XLJy)*> we denote by Pr%(8), the projection of £over X that is obtained by deleting

each action that is not in X.
Given an FSM A=(S, X, Y, h, so), we say that a deterministic LTS (S', XUY, T, soi)

corresponds to A, if Tr(soi)={ a^/5 1 ae X* & fteh\sQ, a)}. An LTS corresponding to A can

always be obtained by unfolding each atomic transition s-x/y->s' into two consecutive

transitions s-x->s"-y->s'. We denote the corresponding LTS by IA =(S', X(JY, T, so).

3 The design of a submodule

3.1 A compound system
Many compound systems can be described as a composition of several components.

We use here the composition of two communicating components, connected as shown in

Figure 3.1 to discuss problems related to the design of a component of a compound system.

For the sake of simplicity, we assume that the sets X, X', U, Z, Y and Y' of actions are pairwise

disjoint. Actions in X(JX' are controlled by the environment and only actions in 7UF can be

observed. Note that this composition represents, in fact, many different compositions,

assuming that each composition has at least one external input, one external output; while

each component must have an input, as well as an output.

We consider the class of systems which can be represented by two FSMs that

communicate asynchronously. One FSM, called a component machine Comp, represents the

behavior of a certain component of the system (the submodule to be designed), while the

other machine, called a context C, models the remaining part of the system.

i r
Figure 3.1: The composition of two communicating components C and Comp

The composite system cannot be specified as an FSM if its environment does not

obeys a proper I/O ordering constraint. Specifically, a next external input xe X(JX' is only

submitted to the system after it has produced an external output ye Y(J Y' in response to the

previous input. Formally, such an environment can be modeled by the LTS shown in Figure

3.2.

xl,x2, x'l,x'2

Figure 3.2: Example of an environment E

The collective behavior of the system of two communicating FSMs C and Comp in

such an environment, can be described by means of a global LTS and an FSM denoted
CO Comp (if it exists). The former describes the behavior in terms of all actions within the

system including internals actions, whereas the latter describes the observed behavior in terms

of external inputs and outputs only.

We define in this paper, the so-called global LTS, which represents the joint behavior

of the environment and the composite system, as the LTS IQ \\IComp \\lE where /£ is the

LTS corresponding to the context C, I Comp is the LTS corresponding to the component

Comp and IE is the LTS corresponding to the environment E. The composite system accepts

an external input only when it is at a stable state, i.e. when the LTS IE is in the state Open.

xl/ul x2/yl

zl/u2 z2/y2
Figure 3.3: The LTS /C and the context C

To illustrate the computation of the global LTS, we consider the following example.

Consider the context C and the component Comp in Figures 3.3 and 3.4. We construct the

global LTS represented by the graph in Figure 3.5.

u2/z2

x'l/y'2 x'2/zl
Figure 3.4 : The component Comp and the LTS I Comp

Based on the global LTS, the FSM CbComp, can be obtained provided that there are

no livelocks, i.e. cycles labeled only with internal actions. All the internal actions in the

global LTS are declared nonobservable actions and the obtained LTS is determinized. The
FSM CO Comp is then obtained by pairing inputs with the subsequent outputs.

Stable state

State of lc

State of IE

State of IComp

Figure 3.5: The global LTS

The FSM COComp obtained from the global LTS (Figure 3.5) has a single state as

shown in Figure 3.6.

l

x'l/y'2 x'2/y2

Figure 3.6: The composed FSM

3.2 The set of candidate solutions to the equation
Given two deterministic FSMs, A over alphabets XUX" and Y(JY', and C over alphabets XUZ

and yUf/, we wish to find all deterministic solutions over alphabets XW and 7'UZ to the
equation CO Comp =A with Comp being a free variable.

A deterministic FSM B over alphabets X'(JU and FUZ is said to be a solution to the
equation CO Comp = A iff the FSM COB exists and it is equivalent to A.

Asynchronously communicating FSMs significantly differ from synchronously

interacting machines. In response to an external input, asynchronously communicating

machines in a feedback composition may involve into a sequence of interactions before they

produce an external output. The number of interactions varies for different global states and

inputs, opposed to synchronous systems executing just a single interaction in each global

state. For synchronous systems with feedback, in the case where the sets X' and Y' in Figure

3.1 are empty, the set of permissible behaviors to the equation (if not empty), where a

permissible behavior is one represented by a solution, can be represented as the set of

reductions of a specific nondeterministic FSM [Watanabe 93, Aziz 95].

We use a chaos machine (Figure 3.7), defined by Ch=({ch], X'(JU, FUZ, H, ch\e H(ch, v)={(c/i, w) I we FUZ} for all veXUC/. The chaos machine represents all the

traces over the input alphabet X'UU and the output alphabet FUZ, it contains all possible

behaviors of the component machine to be designed.
x'l,x'2,ul,u2

. x'l, x'2, ul,u2/y'l,y'2, zl, z2 e A -i, A .fa, UJ-, U.

L

•y'l,y'2,zl,,z2

Figure 3.7: The chaos machine and the LTS

A trace f$x8 of the chaos machine, is forbidden w.r.t. an external sequence

iff any FSM with the I/O sequence fit8 combined with the given context C

exhibits a behavior different from that of the FSM A w.r.t. the input sequence a; otherwise the

trace is permissible w.r.t. a. In order to classify traces into forbidden and permissible, we

construct the global LTS /£ H/C/z \\lE and we complete IA by adding, for each state with an

outgoing transition labeled with yeFUF, transitions to the deadlock state labeled with all

elements of (FUF)\{;y}, then the obtained LTSs are composed and the resulting LTS is

denoted /A,C- We hide in IA,Ctne external inputs and outputs of the context and we derive

the LTS PA,C over alphabet X'Ut/UZUF that characterizes all the forbidden traces. Any

forbidden trace j3o<5 w.r.t. at least one external input sequence a has a prefix in the LTS PA,€

that takes the LTS to the deadlock state. The next step is to transform the LTS PA C into an

FSM, denoted [[A,C]], where all the I/O sequences corresponding to forbidden traces take

[[A,C]] from the initial state to the special FAIL state. The last step is to derive from [[A,CJ] a

machine (if it exists), denoted by [[A,CJ]/, that contains only permissible traces. Any solution

of the equation COComp=A is a reduction of [[A,C]]/but [[A,C]]/may have reductions that

are not solutions because their compositions with C can not be modeled by an FSM due to

livelocks. Any reduction of [[A,C]]yis an FSM over input alphabet X'(jU and output alphabet

FuZ without forbidden traces; we call such an FSM a candidate solution.

If the set of D-reductions of an FSM G coincides with the set of solutions to the
equation CQComp=A then G is called the largest solution.

3.2.1 Construction of [[A,C]]

We present a method for constructing [[A,C]] and illustrate it using our example.
Step 1. Construct the global LTS /£ ll/cft ll/# of the context and chaos machines in the

environment E (Figure 3.8).

Figure 3.8 : The global LTS /c \\ICh H/E-

Step 2. For each state of the LTS I A with an outgoing transition labeled with yzY(JY', add

transitions from this state to the deadlock state (a state without outgoing transitions) labeled
with each element of (FUr)\{y}, and denote the augmented LTS by IA (Figure 3.9).

Construct the composition of the global machine Ic \\ICh ^E and I A (Figure 3.10), denoted

by IA, C> to compare traces of the global machine with those of I A- The idea behind

augmenting IA is to represent in /A,C all the forbidden traces of the component to be

designed.

yi

x'l/y'2 x'2/y2

Figure 3.9 : The machine A and the LTS I A-

Proposition 3.1. Given a trace a=a\y over alphabet XUX'Ut/UZUlUy', a takes /A,C to the

deadlock state iff a is a trace of the global LTS Ic \\ICh \\lE and PryiJF(«l)}'', with y*y', is

the output sequence produced by the FSM A in response to

x2

Figure 3.10 : The composition IA,C

In other words, a trace of the LTS IA,€ taking it from the initial state to the deadlock

state represent a trace of the global LTS whose projection over the alphabet of A is not a trace

of A. Here we notice that Proposition 3.1 holds only for deterministic FSMs A and C since we

assume that each machine produces exactly one output sequence to any input sequence. Our

next step is to construct the LTS PA,C which is the (X'UCAJZLJy)-projection of IA,C and

characterizes the traces that take it from the initial state to the deadlock state.
Step 3. Derive the LTS that represents the projection of traces of IA,C over the alphabet

X'(JU(JY'(JZ, i.e. declare all the actions xeX and yeY as nonobservable actions and

determinize the obtained LTS. If a subset of states of the determinized LTS comprises a
deadlock state of IA,C then we declare this state a deadlock state. The obtained LTS is

denoted PA,€-
Proposition 3.2. A trace a takes the LTS PA,C to a deadlock state iff there exist a trace cq of

lA,C such that a=PrX'Ut/UFUZ(«l), and the trace a\s the LTS IA,€ to the deadlock

state.

Figure 3.11 : The LTS PA,C

In fact, the traces that take the LTS PA, C horn the initial state to the deadlock state

represent all the forbidden traces of the component machine to be designed.

Step 4. Based on the LTS PA,C, construct the FSM [[A,C]]=(S, XVU, FUZU{ fa i l } , h, s0)

with /atfeFUZ. The set of states of [[A,C]] includes all the states of PA,€ that have an

outgoing transition labeled with an action in X'(JU, a FAIL state representing the deadlock

state of PA,C a°d a special state TRAP. If there are transitions si—*v—*sj—*\v—*sk in the LTS

PA,C where ve X'(J U and we Y'(JZ then there is a transition si-*v/w-^sk in the FSM [[A ,C]].

The FAIL state has looping transitions for every element of X'(JU with the output fail. Any

undefined transition is considered as a don't care transition and we use a TRAP state similar to

[Unger 69] to formally specify "don't care" situations. In reality, these transitions are not

executed in the composition with the given context.

u2/y'l,y'2

x'l,x'2,ul,u2/fail
x'2/z2 ul/y'l

u2/zl

Figure 3.12 : The machine [[A,C]], the transitions leading to the TRAP state are not shown.

Proposition 3.3. Given sequences fie(X'(JU)* and <5e(FUZ)*, the FSM [[A,q] has the I/O

sequence $8 iff any proper prefix of the trace /3tx£ that is a trace of the LTS ?A,C does not

take PA,C from the initial state to the deadlock state.

Proposition 3.4. Given a deterministic FSM B over alphabets X'UU and PUZ such that the
machine COB exists, the FSM COB is equivalent to A iff B is a reduction of [[A,C]].

Proof.
Let A = (S, X(JX', rUF, 8, A, so) and COB = (P, XUX', FUF, A, A, Po).

First part. (̂)

If the FSMs COB and A are not equivalent then there exists an input sequence ae(X\JX') such

that A(SO, a)#A(p0, a), i.e. AOO, ay*yi...yj-iyj and A(po, a)=y\...yj.\ with yjtyj. Let ft\

be the trace executed by the global LTS Ic II/B H/E when a is applied to the initial state of

COB. Due to Proposition 3.1, the trace ft\Qj takes the LTS IA,C to the deadlock, i.e. the trace

PrrUC/UyUZCjSiy/) takes the LTS PA,C to the deadlock (Proposition 3.2), and by

construction of the FSM [[A,C]] (Step 5), the I/O sequence PrX'(JU(ftlWfTUZ(ftWj} takes

the FSM [[A,q] to the FA/L-state.

10

Therefore, the FSM B cannot be a reduction of the FSM [[A,C]] w.r.t. any prolongation of the
input sequence PrX'Ut7(/?l) since the FSM [[A,C]] at the state FAIL produces the output

/flife FUZto any input veX'UU.

Second part. (=^)
If B is not a reduction of [[A,C]] there exists an I/O sequence vl^L of B that is not an I/O

sequence of the FSM [[A,C]]. Therefore, there exists a proper prefix /J'yof v//i such that the

trace /?!*y takes the LTS PA,C from the initial state to the deadlock state (Proposition 3.3), i.e.

there exists a trace £ of IA,€ such that j^*^^U£?UFUZ(D> and tne trace £ takes me LTS

/A,C to the deadlock (Proposition 3.2). Let %=%iy, then ^ is a trace of the global LTS /c H/B

ll/£ and PryUF(£l)y' is the output sequence of the FSM A produced in response to

Prx\JX'(£), such that y£y' (Proposition 3.1).

Thus, the FSMs COB and A are not equivalent w.r.t. the input sequence PrxUX'(D- O

3.2.2 Deleting the fail output
We are interested in the problem of finding the set of candidate solutions to the equation COX

=A that can be represented as the set of D-reductions of a machine over alphabets XUU and
rUZ, while the FSM [[A,C]] has the output alphabet FUZu{/az7}. Our next step is to remove

frorn the output set of [[A, C]] the superfluous output fail preserving the set of deterministic

reductions over alphabets XVUmd FUZof the FSM [[A, q].

Speaking more generally, we are facing the following problem. Given an FSM K=(S,
V, W, h, so) and a subset W of its output alphabet W, we need to construct a submachine D of

K over the output set W such that the sets of D-reductions over the alphabets V and W of the

two FSMs K and D coincide.

Let B be a D-reduction of K. Then for each state t of B there exists a state s of K such

that t is a reduction of s. By this reason, if we delete from K each state s for which there is no

state b of a deterministic FSM over the output alphabet W such that b<s, and delete each

transition such that its output is not in W, the resulting submachine will preserve all reductions

of K over alphabets Vand W. A question arises which properties should have a state s of K in

order not to admit a state b of any deterministic FSM over the output alphabet W such that

b<s.
Definition 3.1. Given an FSM K=(S, V, W, h, so) and a set WcW, a state s of K is said to be

an W(l)-redundant state if there exists an input ve V such that h2(s, v)nW=0. Suppose we

have determined all the W(£)-redundant states for k>0. A state s of K is said to be W(k+l)-
redundant if it is W(fc)-redundant, or there exists an input ve V such that all the states in h^(s,

v) are W(fc)-redundant. The state s is said to be W-redundant if there exists an integer k such

that it is W(£)-redundant.

11

Since the set 5 of states of K is finite there exists some k < \S\h that the sets of
>«,

W(£)-redundant and W(fc+l)-redundant states coincide. We denote Sthe set of W-redundant

states of K.
Proposition 3.5. Given an FSM K= (S, V, W, h, so), WcW', and a state s of K, if there exists

a deterministic FSM B = (Q, V, W, 8, A, q0) and a state q of B such that q<s then s is not a W-

redundant state of K.

Proof
1. If there exists a state q of an FSM B such that q<s, then the state s is not W(I)-redundant.

2. Assumption of induction. Let the statement of Proposition 3.5 holds for all integers less

than k, k>l, i.e. if a state of B is a reduction of the state s then the state s is not W(k-l)-

redundant.

3. Suppose now that the state s is W(K) -redundant and there exists a state q of a deterministic

FSM B such that q<s. Then there exists an input ve V such that for every output we. W the state

hh(s,v) (if it exists) is W(/)-redundant, j<k. Since q is a reduction of s then the state q'=8(q, v)

of B should be a reduction of the state h^(s,v), where w=h(q,v)e W. The latter contradicts the

assumption of induction. Thus, if q is a reduction of the state s then s is not W(£)-redundant
/\r any k, i.e. s£ S. D

Proposition 3.6. Given an FSM K = (S, V, W, h, s0) and a set WcW, let S be the set of all
>\t states of K. If s0z S then there is no reduction of K over the output set W.

Otherwise, the submachine D =(S\S, V, W, h, so) of K, such that h(s,v) = h(s,v)\[{(s',w')\V XV

w'g W }u{(s',w)l 5'e S }], for each (s,v)e(S\S)xV has the same set of D-reductions over

alphabets V and W as the FSM K.

Proof
xv

If SQ£ S then there is no state b of any deterministic FSM over the output alphabet W such that

b<s0 (Proposition 3.5), and therefore, the set of reductions of K with the output set W is
xv

empty. If SQ£ S then, by definition of the set S, the set h(s, v) is not empty for each

(s,v)e (5\5)xV. Moreover, by construction of h, /i(5,v)c(5\S)xW. Thus, D is a submachine of

K.

Let B = (Q, V, W, 8, A, q0) be a D-reduction of K and w \... w£ be the output sequence of B to

the input sequence v i... vfc applied in the initial state. The state S(qo, v i... vj) is a reduction of
1 1 "**

the state h^i WJ(SQ, v\...v/) for each 7'=!,...,^;, i.e. the state h^ WJ{so, v\...vj)eS\S
x\n 3.5). Thus, (o(qo, v\...vj), wj)e h(so,v\...vj),andB is a reduction of D. D

Proposition 3.6 implies the following algorithm for reducing the FSM [[A, C]] with
the output alphabet F'uZu{/ai7} to an FSM with the output alphabet 7'uZ that has the same

set of D-reductions over alphabets X'uUand T\JL as [[A, C]].

12

x'2/z2 ul/y'l
v*4 ul/zl ^X-*^A^

)u2/zl

u2/zl

Figure 3.13 : The machine [[A, C]]f, the transitions leading to the TRAP state are not shown.

Algorithm
Input: The FSM [[A,Q] = (S, X'uU, FuZu{/az7}, h, so).

Output: A submachine [[A, C]]fof [[A, C]] over the output alphabet FuZ with the same set

of D-reductions over alphabets X'^jU and FuZ as [[A,C]] if such D-reductions exist.

Step 1. Determine the set 5 of FuZ-redundant states of [[A, C]]. If soe S then the FSM [[A,

C]] has no D-reductions over the output alphabet FuZ, and the procedure terminates;

otherwise Step 2.
y",

Step 2. For each (s, v)e (S\S)xX'uU, h(s, v) is obtained from h(s, v) by deleting every pair (s',

w) such that s'e S or w<2 FuZ. The obtained machine [[A, C]]/ =(5\S, X'utf, FuZ, /?, jo) has

the same set of D-reductions over alphabets X'uU and FuZ as the FSM [[A, C]].

The validity of the above algorithm is stated in the following theorem.

Theorem 3.1. Given deterministic FSMs A and C, if the machine [[A, C]]f exists then the set

of candidate solutions to the equation COX=A coincides with the set of D-reductions of [[A,

In the case when the machine [[A, C]]/does not exist, there is no solution to the

equation COX=A. When the [[A, C]]/ exists, two cases are possible. In the first case, the LTS
1(2 II /[[A, C]]f\\lE does not contain livelocks, i.e. there are no cycles labeled only with internal

actions in 1/uZ. In this case, every D-reduction of [[A, C]]/is a solution to the equation CQX=

A, and [[A, Cj]yis the largest solution to the equation. In the second case, the LTS Ic '̂ [[A,
C]]f\\lE has livelocks. Here we have two possibilities :

1- every D-reduction F of [[A, C]]/is not a solution since COF does not exist due to

livelocks in Ic II/F'I/E (see Example 1, Figure 3.14).

2- the set of solutions to the equation COX=A is a subset of the set of D-reductions of [[A,

C]]/ (see Example 2, Figure 3.15 and Figure 3.16).

13

Example 1

xl/yl xl,zl/yl

z2/u2

Figure 3.14: The machines A, C and the LTS /c H/C/i l^£-

The [[A, C\]f machine obtained is the chaos machine. The machine COF does not

exist for any D-reduction F of [[A, C]]f since after any possible output in response to u\n

the initial state of F, the compound system enters a livelock for an appropriate external input

x.

Example 2

We use the same machine A as in Example 1 and the context C shown in Figure 3.16.

zl, z2/ul

xl, zl/yl

iul/zl
u2/z2

S \2

x2/y2

Figure 3.15 : The machines C, F\,F2 and

The [[A, Q]f machine obtained is again the chaos machine, however its D-

reductions F\d F2 are solutions, while the D-reduction F3 of [[A, C]]fis not a solution. In

this example, the largest solution does not exist since for any I/O sequence of [[A, C]]/we can

14

find a D-reduction F which is a solution and includes this I/O sequence. Consider the FSM Bn

in Figure 3.16:

'ul/z2 u2/zlp

Figure 3.16 : The machine Bn.

The FSM Bn is a reduction of [[A, C]]/and the LTS I^l/Bnll/£ has no livelocks.

Thus, every D-reduction of Bn, n>l, is a solution to the equation CQX=A. Consider now any

I/O sequence over alphabets U and Z of length m. It is an I/O sequence of the FSM Bm+2 and

if we choose a D-submachine F of #m+2 having this I/O sequence then F is a solution to the

equation CQX=A. Therefore, if a largest solution G exists, we have G<[[A, C]]yand [[A, C]]f

£G, but if we remove any trace from [[A, C]]f we loose some solutions. This implies that

there is no largest solution in this case.

4 Conclusion

We have presented in this paper an approach to solve the problem of submodule construction

in the realm of the Finite State Machine model. This problem may be formulated

mathematically by the equation COX=A, where C represents the specification of the known

part of the system, A represents the specification of the whole system, X represents the
specification of the submodule to be constructed, 0 is a composition operator and = is the

trace equivalence relation. The set of solutions to the equation (if they exist) can be

represented as a subset of the set of D-reductions of a proper nondeterministic FSM. The

algorithm for finding this nondeterministic FSM is based on the use of a chaos machine and

the construction of a machine which separates the permissible and the forbidden traces. After

removing all the forbidden traces, we obtain the sought-after machine.

Due to the existence of livelocks, some reductions of the obtained machine are not

solutions to the equation since their composition with the context can not be modeled by an

FSM.

If there are no livelocks, the set of solutions to the equation coincides with the set of D-

reductions of the obtained machine and then we can characterize all the solutions. In this case,

we can be interested in finding a particular solution for the implementation that optimizes a

given criterion. Different criteria can be used for this optimization. The first possible criterion

15

might be the number of states, in this case, we have to construct a D-reduction of the largest

solution with the minimal number of states [Drissi 98]. Others criteria could be the design of a

component "easy" to test or having a minimal number of outputs or a minimal number of

internal interactions.

References
[Aziz 95] A. Aziz, F. Balarin, R. K. Brayton, M. D. DiBenedetto and A. Saldanha,

Supervisory Control of Finite State Machines, Proceedings of the 7th International

Conference, CAV'95, Liege, Belgium., pp. 279-292, July 3-5, 1995.

[Drissi 98] J. Drissi, A. Petrenko and N. Yevtushenko, On the Reduction of Nondeterministic

Finite State Machine, to be submitted soon.

[Gill 62] A. Gill, Introduction to the theory of Finite-State Machines, Me Graw-Hill Book

Company, Inc, 1962.

[Lin 95] B. Lin, G. de Jong and T. Kolks, Hierarchical Optimization of Asynchronous

Circuits, Proceedings of the 32nd Design Automation Conference, pp 712-717, 1995.

[Merlin 83] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications

and Communication Protocols, ACM Trans, on Programming Languages and Systems,

Vol. 5, No. 1, pp. 1-25, Jan. 1983.

[Petrenko 93] A. Petrenko, N. Yevtushenko, A. Lebedev and A. Das, Nondeterministic state

machines in protocol conformance testing, Proceedings of the IFIP Sixth International

Workshop on Protocol Test Systems, Pau, France, pp. 363-378, September 1993.

[Petrenko 94] A. Petrenko, N. Yevtushenko and G. v. Bochmann, Experiments on

Nondeterministic Systems for the Reduction Relation, IWTCS'96.

[Petrenko 96] A. Petrenko and G. v. Bochmann, On fault coverage of tests for finite state

specifications, in Computer Networks and ISDN Systems, special issue on Protocol

Testing, 1996.

[Qin 91] H. Qin and P. Lewis, Factorisation of Finite State Machines under Strong and

Observational Equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp 284-

307, July-Sept. 1991.

[Starke 72] P. H. Starke, Abstract automata, American Elsevier Publishing Company, Inc-

New York, 1972.

[Unger 69] S. H. Unger, Asynchronous Sequential Switching Circuits. New York, Wiley-

Interscience, 1969.

[Watanabe 93] Watanabe, Y, and Brayton, R K The maximal set of permissible behaviors for

fsm networks' Proc. of the IEEE/ACM International Conference on Computer-Aided

Design , pp 316-320, 1993.

[Wood 87] D. Wood, Theory of Computation, John Wiley & Sons, Inc, 1987.

16

